The Matroids and Hypergraphs Packages in Maple
2024

* Maple 2024 adds a new package for dealing with Matroids and a new package for dealing
with Hypergraphs.

V¥ Matroids

* A matroid is an abstract mathematical object which encodes the notion of
independence. It has relevant applications in graph theory, linear algebra, geometry,
topology, network theory, and more. Matroid theory is a thriving area of research.

* The simplest way to construct a matroid is via a matrix. Matroids constructed this way
are called linear or representable.

> A := Matrix([[1,-1,0,1],[1,1,1,0],[1,1,0,1]]);
1 —1 0 1
A4=11 1 10

> wi th(Matroids);

[Are[somorphic, Bases, CharacteristicPolynomial, Circuits, Contraction, Deletion, DependentSets, Dual,
ExampleMatroids, Flats, GroundSet, Hyperplanes, IndependentSets, IsMinorOf, Matroid, Rank,
SetDisplayStyle, Ti uttePonnomial]

> M:= Matroi d(A);
the linear matroid whose ground set is the set of column vectors of the matrix:

Mo 1 =101
11 10

* This matroid encodes the linear dependencies among the columns of 4. The so-called
ground set of the matroid consists of the numbers 1 through 4, interpreted as column
indices into 4.

e We can ask for which subsets of columns are:
— linearly independent,
—linearly dependent, and

— bases for the column space of A.

> | ndependent Sets(M;
[@, {1}, {2}, {3}, {4}, {1, 2}, {1,3}, {2, 3}, {1, 4}, {2, 4}, {3,4}, {1,2,3}, {1, 2,4}, {2, 3,4}]



> Dependent Sets(M;
[{1,3,4},{1,2,3,4}]

> Bases(M;
[{1,2,3},{1,2,4},{2,3,4}]

* These answers change if the column vectors are considered over a finite field, e.g. the
field with two elements:

> Mhodul ar := Matroi d(A 2);

the linear matroid whose ground set is the set of column vectors of the matrix:

1 1 0 1
1 1 1 o |mod2

Mmodular =

> Bases( Modul ar);
[{1,3},{2,3}, {1,4},{2,4}, {3,4}]

* Notice that the size of a basis changed from 3 to 2. This number is the rank of the
matroid, which agrees with the familiar notion of rank (of the column space).

> Rank(M;

> Rank( Mrodul ar) ;
2

* Matroids are much more general than this! As an abstraction of independence, matroids
also encode graph independence.

* Given a graph G, a subset of its edges are called dependent if they contain a path which
forms a closed loop, known as a circuit.

> Wt h(G aphTheory):

> G := Gaph({{a,b},{a,c},{b,d},{a,d}});
G = Graph 1: an undirected graph with 4 vertices and 4 edge(s)

> Graphichatroid := Matroi d( G ;

the graphic matroid on the graph:

GraphicMatroid =




> Circuits(GaphichMatroid);
[{"a_b","a d","b d"}]
* Inspired by linear algebra, one may take the definition of a basis as a maximal
independent set. The bases of a graphic matroid are its spanning forests.
> Bases( G aphi chvatroi d);
[ "a_b", "a_c”, ”a_d”}, {"a_b", "a_c”, "b_d"}, {"a_c", "a_d", "b_d"}]

* In fact, every concept about linear independence coming from linear algebra (rank,
bases, etc) can be axiomatized and interpreted for a graphic matroid.

* Conversely, the concept of a circuit from graph theory applies to linear matroids.

> Rank( G aphi civatroi d);

> Circuits(M;
[{1,3,4}]
> Circuits(Mrodul ar);
[{1,2},{1,3,4},{2,3,4}]

* This is the power of the abstraction of matroids. One rigorous definition of a matroid is
as follows.

* A matroid is a pair M= (E,I), where
— E is a finite set called the ground set and
—1is a collection of subsets of E called independent sets which satisfy the axioms:
¢ (Axiom 1) The empty set is an independent set.
* (Axiom 2) Every subset of an independent set is independent.

e (Axiom 3) If 71 and I2 are independent sets and /7 has more elements than 12,
then there exists an element of /2 which when included in /! results in an
independent set.

* The matroid package includes functionality for constructing a matroid directly from its
independent sets:
> AxiomaticMatroid := Matroid([1,2,3], independentsets = [{},{1},{2},
{3},{1,3}.,{2,3}]);
AxiomaticMatroid *= (a matroid on 3 elements with 5 independent sets)

* In fact, for each of the matroid properties of independent sets, bases, dependent sets,
and circuits we have seen, one may construct a matroid (provided they satisfy certain
axioms, listed on the Matroid help page).

* Each property uniquely determines the rest, and the matroids package supports several
other axiomatic constructions (via flats, hyperplanes, or a rank function).

* Algorithms which convert between these representations are called cryptomorphisms.
The matroids package showcases fast implementations of these algorithms.



> Circuits(Axi omaticMatroid);
[{1,2}]
> Bases(Axi omaticMatroid);
[{1,3},{2,3}]
* Beyond linear matroids constructed from a matrix, graphic matroids constructed from a

graph, and general matroids constructed via axioms, the matroid package also features
the construction of algebraic matroids, created from polynomial ideals.

> wi th(Pol ynom al | deal s):
> Al gebraichatroid : = Matroi d(<x+y+z"2, z"2+y>);

the algebraic matroid on the polynomial ideal:
AlgebraicMatroid = 5 )
(7 + »wZ +x+ y>

> Dependent Set s( Al gebrai cMatroi d);
[{1},{1,2},{1,3}, {2,3}, {1,2,3}]

* That {1} is a dependent set indicates that there exists a polynomial in the ideal which
involves only the first variable, x.

* The matroids package features a gallery of well-known matroids, which can be made
available by loading the ExampleMatroids subpackage.
> W t h( Exanpl eMat r oi ds) ;
[Fano, Hesse, MacLane, NCubeMatroid, NonFano, NonPappus, Pappus, TicTacToe, UniformMatroid,
Vamos]|
* Additionally, one may perform several operations on matroids:

* Arelsomorphic: determine if two matroids are the same, under some relabeling of the
ground set;

» Deletion and Contraction: generalizations of deletion and contraction of edges of a
graph;
* Dual: a generalization of the dual of a planar graph. Unlike for graphs, duals of matroids

always exist. For linear matroids, duality corresponds to orthogonal complements of the
row space.

» TuttePolynomial and CharacteristicPolynomial: polynomial invariants of matroids which
generalize those of a graph;

* IsMinorOf: a test to check if one matroid can be obtained by another via a sequence of
deletions and contractions.

> ContractionMatroid : = Contraction(G aphicMatroid, {4});
ContractionMatroid ‘= (a matroid on 4 elements with 1 circuit)

> Arel sonor phi c(Contracti onMatroi d, Axi omati cMatroid);
false



> | sM norOf (Contracti onMatroi d, G aphi cvatroid);
true, &, &
> Dual (M;
(a matroid on 4 elements with 3 bases of size 1)
> Matroids:-TuttePol ynom al (G aphi cMatroid, x,y);
X +x2+xy
> Matroids:-CharacteristicPol ynom al (G aphi chvatroi d, k) ;

E—4i+5k—2

V¥V Hypergraphs
* The Hypergraphs package is the computational backbone of the matroids package, and
it is much more than that!

* A hypergraph is a pair (V, E) consisting of a finite set ' called vertices and a collection
E of subsets of I called hyperedges.

* Hypergraphs, as indicated by the name, generalize graphs: a graph can be thought of as
a hypergraph where every hyperedge has size two (or size one if self-loops are allowed).

* We create a hypergraph with the Hypergraph command.

> wi t h( Hyper graphs);

[AddHyperedges, AddVertices, AntiRank, AreEqual, Arelsomorphic, ComplementHypergraph,
DegreeProfile, Draw, DualHypergraph, ExampleHypergraphs, Hyperedges, Hypergraph, IsConnected,
IsEdge, IsLinear, IsRegular, IsUniform, LineGraph, Max, Min, NumberOfHyperedges,
NumberOfVertices, PartialHypergraph, Rank, SubHypergraph, Transversal,
VertexEdgelncidenceGraph, Vertices]

> H := Hypergraph([1,2,3,4],[{1,2},{1,3},{2,3,4}]);
H = < a hypergraph on 4 vertices with 3 hyperedges >

* For few vertices and hyperedges, one can visualize a hypergraph as an augmented
graph.

» Distinguished nodes of the graph correspond to vertices of the hypergraph. Pairs of
nodes are connected, as usual, if they form a (hyper)edge.

* Additional, auxiliary nodes are included for every hyperedge of size greater than two
and auxiliary edges connect such nodes with the vertices they include.



> Draw( H);

* Procedures for manipulating hypergraphs include AddHyperedges and AddVertices.
* Given a hypergraph, the functions ComplementHypergraph, DualHypergraph, and
SubHypergraph create new hypergraphs in the ways the names suggest.

* Basic functionality such as Hyperedges, NumberOfHyperedges, Vertices, and
NumberOfVertices are available, as are simple queries including AreEqual, IsConnected,

and IsEdge.

* The functions DegreeProfile and VertexEdgelncidenceGraph directly generalize those

notions from graphs to hypergraphs.

> H2 : = AddHyperedges(AddVertices(H, ["apple"]),[{1,4},{2, "apple", 3,4},

{3}1);

H2 = < a hypergraph on 5 vertices with 6 hyperedges >



> Draw( H2) ;

> [ AreEqual (H H2), |sEdge(H2,{2,1}), Nunmber O Hyper edges(H2),
Hyper gr aphs: - Nunmber Of Verti ces(H2), Hypergraphs:-1sConnected(H2),
DegreeProfile(H)];
[ false, true, 6, 5, true, [2, 2,2, 1]]

* The major advancement in Maple with the hypergraphs package has to do with what
goes on behind the scenes.

* Subsets are carefully encoded using bit-vectors to make hefty calculations fast and
feasible.
> w t h( Exanpl eHyper gr aphs) ;
[ Fan, Kuratowski, Lovasz, NonEmptyPowerSet, RandomHypergraph |
* Below, we illustrate the core hypergraph algorithms on a random hypergraph on 10
vertices with 100 hyperedges.
> R : = RandonHyper graph(10, 100);
R = < a hypergraph on 10 vertices with 100 hyperedges >



> Draw(R);

* The Min function computes the hyperedges which do not properly contain another
hyperedge.

* The Max function computes those which are not properly contained in another
hyperedge.

* The Transversal function computes the sets of vertices for which every hyperedge
contains some element in that set.

> Hyperedges(M n(R));

[{6,7,9},{2.3,10},{7,9,10}, {1,2,4,5), {1,4,5,7}, {1,4,6,7}, {1,3,4,8}, {1,3,7,8}, {2,3,7,8}, {1,
3,4,9},{2,4,5,9},{2,3,6,9}, {1,3,8,9}, {3,5,8,9}, {1,2,4,10}, {1,4,5,10}, {2,4,5,10}, {1,3,6,
10}, {2,5,6,10}, {1,3,7,10}, {2,4,7,10}, {1,2,8,10}, {1,3,8,10}, {3,4,8,10}, {4,6,8,10}, {6,7,
8,10}, {1,4,9,10}, {1,2,3,5,7}, {1,3,5,6,7}, {2,3,5.6,7}, {3.4,5,6,7}, {1,2,3,5,8}, {2,4,6,7,

8}, {1,5,6,7,8},{3,4,5,6,9},{2.3,5,7,9}, {3,4,7,8,9}, {1,5,6,8,10}, {1,5,6,9, 10} ]



> Hyperedges(Max(R));

[{2.4,5,10}, {1,2,4,5,6},{1,2,3,5,7}, {2,4,5,7,9}, {1,2,6,7,9}, {1,2,4,9,10}, {1,2,5,6,7,8}, {1,
2,3,4,5,9},{2,3,5,6,7,9}, {2,3,4,5.8,9}, {1,3,4,5,6,10}, {2,3,4,6,7,10}, {1,2,5,6,7, 10}, {1,
4,5,6,7,10}, {1,2,4,6,8,10}, {2,3,4,7,8,10}, {1,2,5,7,8,10}, {3,4,5,7,8, 10}, {2,4,6,7,8, 10},
{1, 3,5,6,9, 10}, {2, 3,6,7,9, 10}, {2, 3,6,8,9, 10}, {1, 5,6,8,9, 10}, {1, 2,3,4,6,8, 9}, {1, 3,5,6,7,
8,9}, {3.4,5,6,7,8,9},{1,2,3,5,6,8,10}, {1,2,3,6,7,8,10}, {1,3,4,5,7,9,10}, {3,4,5,6,8,9,
10}, {1,4,5,7,8,9,10}, {2,5,6,7,8,9,10}, {1,3,4,6,7,8,9, 10} ]

> Hyper edges(Transversal (R));

[{3.4,6,10}, {3,5,6,10}, {2,3,7,10}, {3,4,7,10}, {3,5,7,10}, {1,7,9,10}, {1,2,3,4,7}, {1,2,4,5,
7}, {1,3,4,5,7},{2,3,4,5,7}, {1,2,3,6,7},{1,3,4,6,7},{2,3,4,6,7}, {1,3,5,6,7}, {1,2,3,7, 8},
{1,2,4,7,8},{1,2,5,7,8},{1,3,5,7,8},{3,4,5,7,8}, {1,2,6,7,8}, {2,4,6,7,8}, {3,4,6,7,8}, {1,
2,3,6,9},{1,2,4,6,9},{1,3,4,6,9}, {2,3,4,6,9}, {2,3,5,6,9}, {1,2,4,7,9}, {1,2,3,8,9}, {1,2,
4,8,9},{2,3,4,8,9},{1,2,5,8,9}, {3,4,5,8,9}, {1,2,6,8,9}, {3,4,6,8,9}, {1,2,7,8,9}, {1,2,3,
6,10}, {1,2,5,7,10}, {1,5,6,7,10}, {1,2,6,8, 10}, {2,4,6,8,10}, {1,5,6,8,10}, {4,5,6, 8, 10},
{2,4,7,8,10}, {4,6,7,8,10}, {1,2,3,9,10}, {1,2,4,9,10}, {1,3,4,9, 10}, {1,2,5,9,10}, {3,4,5,9,
10}, {1,2,6,9,10}, {1,3,6,9,10}, {2,4,7,9,10}, {4,5,7,9, 10}, {1,3,8,9, 10}, {3,4,8,9, 10}, {1,
5,8,9,10}, {4,5,8,9,10}, {1,6,8,9,10}, {5,6,8,9,10}, {2,7,8,9, 10}, {4,7,8,9,10}, {5,7,38,9,
10}, {2,3,5,7,8,9}, {2,5,6,7,8,9}, {1,2,4,5,6,10}]

e Put another way, consider the hypergraph Food whose vertices are ingredients in your

kitchen, and whose hyperedges are recipes.

* Then Min(Food) are those recipes which require a minimal set of ingredients (i.e.
removing any ingredient prevents any recipe from being made).

* Max(Food) are those recipes which maximally use ingredients (i.e. you cannot include
an additional ingredient to make a bigger recipe).

e Transversal(Food) are all sets of ingredients an adversary could steal from your fridge
which would prevent you from making any recipe.

* In the context of matroids, the sets of subsets that can be used to define a matroid
axiomatically are all hypergraphs, and they are stored as such if they are known for a
given matroid. Several cryptomorphisms come directly from these hypergraph
operations. For example, the Circuits of a matroid M are just Min(DependentSets(M) ) .

* Below, we illustrate the remaining functionality and invite you to check out the details
on our help pages!



> DrawG aph(Hyper graphs: -Li neG aph(H));

14 >
> [Rank(H), Anti Rank(H)];
(3,2]
> [IsLinear(H),|sRegular(H,IsUniformH];
[ true, false, false ]
> wi t h( Exanpl eHyper gr aphs) ;

[ Fan, Kuratowski, Lovasz, NonEmptyPowerSet, RandomHypergraph |
[ Draw Kur at owski ({1, 2, 3, 4,5}, 2)), Drawm Kur at owski ({1, 2, 3,4},3))1];

\Y




> Draw Lovasz(5));

> Nunber OF Hyper edges(Lovasz(5));

206



